欢迎您登录科学中国人官方网站!!
新浪微博|网站地图|联系我们
笃志逐梦 义鹘凌云

来源:  发布时间:2021-06-18

——记航空工业沈阳飞机设计研究所项目总设计师王向明
  
吴应清

  
  
“没有什么是一成不变的”
  “飞机结构设计是一项创造性工作,没有什么是一成不变的”,这是沈阳飞机设计研究所(以下简称“沈阳所”)项目总设计师王向明经常挂在嘴边的一句话。他从事飞机结构设计已经30多年,主持和参与了多个型号战机结构的设计工作。
  在国际社会高度竞争发展的今天,无论是国家安全,还是经济建设,都要依靠强大的国防力量作为后盾。有实力,才有底气。先进战机作为航空武器装备克敌制胜的重要因素,更是我国广阔海空疆域安全保障的重要支撑。
  迄今为止,战机已经发展至第四代(国外称第五代),例如美国F-22、F-35,俄罗斯苏-57等。但王向明指出,无论哪一代战机,都离不开机体结构。机体结构构成了飞行和装载平台,是影响飞机战技性能和飞行安全的关键因素。机体结构通常占飞机空机重量的45%以上,比例高、影响大。现代战机结构普遍存在着两类棘手的问题——新机研制普遍超重、服役型号频繁开裂。超重通常达8%以上,这样算下来,轻则数百公斤,重则甚至上吨,而疲劳开裂约占外场损伤总量的80%。这两类问题影响极大,其中结构超重会降低飞机战术、技术指标,使飞机变得笨重、航程变短、挂载武器减少;疲劳开裂则会直接影响飞行安全,降低服役战机的完好率、出勤率。
  王向明介绍,结构设计通常采用先进技术手段来挖掘潜力,例如优化、数字化等精益设计,复合材料、钛合金等先进材料替换,高效数控加工、焊接、超塑成形、3D打印等先进制造工艺应用等,但他同时感叹,重量和寿命指标已达极致,触及“天花板”,甚至发展至没有飞机不超重、没有型号不开裂的境地。即便航空技术先进的西方发达国家,同样也面临着如此窘境。
  传统结构伴随四代战机已走过70多年,经历了经验设计(继承设计)、等代设计、精益设计。半个多世纪以来,结构设计/分析方法、计算机/数字化技术、先进材料/制造技术发展迅猛,但结构自身发展较慢,相对滞后,超重、开裂仍是设计师们最为头疼的问题。
  战机传统结构的弊端长期难以突破源自于飞机结构的异常复杂。王向明为记者一一分析,传统结构零件多、重量大、危险部位多、连接异常复杂。结构型式单一,零部件离散,以接头连接、铆接/螺接为主,涉及十余个大部件、上百种工艺、数万个零件、数十万个标准件,连接过多导致结构超重、疲劳薄弱环节增多。
  “飞机结构设计是个老专业,结构形式多年不变,可以说‘耳熟能详’,非常‘经典’。我们以往所做的结构设计除了画图、CAD建模,没有更多事情可做,诸如强度、寿命、隐身功能、可制造性、可维护性等属性主要依赖其他专业。久而久之,结构设计就只以结构画图/建模示人,以至于很多同行、领导都误认为结构设计的核心工作只是画图、建模。评价结构设计师的标准也就成了看谁把图画得漂亮,画得快,画得准。”王向明的话语中充满了无奈。
  “画图、建模仅仅是设计思想的表达,而逐一准确地定义零部件各方面的属性才是真正意义上的飞机结构设计,结构技术必须要创新发展,才能支撑新一代战机研制!”尽管不被外界所了解,但这是王向明经常告诫自己团队成员的一句话,也是他在30多年职业生涯中执着追求的技术方向。
  王向明曾在原总装先进制造技术专业组做专家20余年,多年研究工作的积累使他深刻认识到,飞机结构的研制长期采用串行“孤岛”模式,设计与制造脱节,闭门造“图”,设计技术发展没有原动力,被迫借鉴、继承老旧结构,超重、开裂周而复始。所谓“一代飞机、一代技术”,新一代战机研制需要与之相称的结构技术支撑。“我不相信,用老旧飞机结构能搞出新一代战机!”王向明如是感慨。
  先进制造技术的迅猛发展为飞机结构创新提供了契机,何不利用这些先进制造工艺来发展自己的设计技术呢?王向明无时无刻不在思索着。飞机结构创新设计/制造一体化的技术方向应运而生,他由此提出基于先进制造量身定做“四化”创新结构,即新概念结构——大型整体化、构型拓扑化、梯度复合化和功能结构一体化,以实现高减重、长寿命、多功能、低成本、敏捷制造,进而支撑新一代战机型号研制。
  不难看出,传统结构以画图/建模为主的串行设计模式已无法支撑“四化”新概念结构设计。为此,王向明早在2003年就提出了建立结构实验室的设想,试图以实验室作为载体,打通设计制造一体化的全技术链条,同时为激发设计员创新灵感提供研发平台。他积极宣传,四处呼吁,克服重重困难,历时10年坚持不懈,不断用重要研究进展和标志性成果打破“伪命题说”,终于创建了“飞行器新概念结构航空科技重点实验室”“辽宁省增材制造共性技术创新中心”等研发平台,这是国内首家用于飞行器结构创新设计/制造一体化的研发平台,专门用以孵化飞机新概念结构,先后成功申请立项了飞行器结构领域唯一的国防原“973”项目、创新结构探索项目、先进制造技术集成验证项目等,为沈阳所乃至全行业结构技术的发展贡献力量。
  
不走寻常路,突破“天花板”
  从一个奇思妙想的产生,到技术验证,再到技术成果的取得和应用,王向明的研究之路并非一帆风顺。在新概念结构研究过程中,就必须要面对“既要设计得出,也能造得出,并保障使用安全”等重重问题的挑战。
  飞机传统结构设计主要采用串行模式,类似流水线,分别以“孤岛”形式存在,无法适应“四化”新概念结构技术带来的挑战。为此,王向明提出多约束协同设计方法,即将强度/刚度、寿命、功能、维护、材料、制造、周期等属性约束均前移至设计源头,用其设计许用值构建多约束设计域,搭建创新结构设计的“舞台”,以增强工程可实现性。
  王向明基于多约束协同设计方法,发明了无接头连接的翼-身整体大部件。传统机翼与机身是分开的,采用很强的接头和大规格螺栓进行连接。该连接区域是全机关键部位,重量大、应力集中严重,多采用高强度钛合金或高强钢来保障安全。另外,传统机翼-机身组合接头占用空间大,凸出理论外形,必须“鼓包”,直接否定先进气动/隐身布局。通过弱化应力集中、使参与区最小化(参与区是非承载的“偷懒区”)、消除接头连接,建立了翼-身整体大部件。这种大部件的零件数量少、结构完整性好,采用铝合金即可满足要求,而且能大幅度减轻结构重量,增加装载燃油,但存在可制造性、裂纹扩展抑制和可维护性等难点。
  针对可制造性,王向明提出了铝合金加强框-翼梁整体件设计/制造一体化方法。选用铝合金预拉伸厚板,通过残余应力对称释放、优化机加工艺路径,实现大长细比框-梁整体件机加翘曲变形有效控制。同比传统钛合金框梁组合结构,零件减少一半,减重超过1/3。
  针对确保寿命安全的裂纹扩展抑制,王向明提出长寿命金属层合结构设计方法。钛合金是现代战机结构的骨干材料,多为主承力结构。但是,钛合金也存在着相应的弱点,当应力水平高于某临界值时,裂纹失稳扩展现象普遍,即扩展过程极短,会毫无迹象地瞬间断裂,导致结构寿命安全存在较大隐患!美国的Ti-6Al-4V ELI超低间隙元素钛合金、国内TC4-DT损伤容限型钛合金等就是针对这类问题研制的,虽然有所缓解,但问题仍然存在。而王向明则另辟蹊径,基于扩散连接制造技术提出了钛合金层合结构设计方法,即将钛合金板材逐层累积叠加扩散焊为一个整体,通过适当布置非焊合区,迫使裂纹扩展路径“拐弯”,以此延长裂纹扩展寿命。他在研究过程中发现了裂纹扩展“平台”特征,据此发明了钛合金层合结构,使裂纹扩展寿命显著延长。另外王向明还提出了基于特种加工的金属梯度结构设计方法,使好钢用在刀刃上,并发现了裂纹扩展“拐点”特征。据此发明钛合金梯度梁肋结构,使减重和寿命取得显著收益。
  无接头连接的翼-身整体大部件在带来显著收益的同时,也面临内部系统维护安装通道所需的开口较多进而破坏整体性的矛盾。例如,机身整体油箱需要在上表面开设数十个维护开口/口盖进行例行维护。开设众多开口/口盖,使整体大部件的优势荡然无存。为此,王向明基于黏弹性材料界面库伦摩擦最大、临界比压最小、橡胶板与密封剂啮合匹配,提出啮合密封结构设计方法。发明的整体油箱干态啮合密封结构壁板可反复拆装,整体开闭,关闭时密封,开启时维护,使口盖数量锐减2/3。传统密封采用的是一次性密封“死结构”。啮合密封结构规避了大量开口破坏结构整体性的矛盾,同时减少了缝隙阶差,改善了气动和隐身。有趣的是,王向明最初的原理验证是用家里的铝质饭盆完成的,至今仍存放在他的书柜里,虽历经26年之久,但里面的水仍然默默地守候着,诉说着曾经的故事。这个简陋的原理件虽然其貌不扬,但在王向明的心里却贵如千金。
  此外,通过多约束设计创新研制的翼-身整体大部件实现减重1/4以上、疲劳危险部位减少3/4,机翼燃油增加100多公斤。
  王向明还提出了高颤振速度铰链式平尾机构/结构一体化设计方法。平尾是飞机飞行平衡配平的核心部件,一旦颤振发散到酿成坠机后果不堪设想,所以要尽量提高颤振速度。传统平尾颤振由多种因素耦合交织在一起,提高颤振速度困难而复杂,甚至不得不增加配重进行调节。另外,传统平尾的转轴尺寸较大,很难布置在机体尾部狭小空间内,必须“鼓包”,由此导致气动和隐身性能恶化。基于解耦简化,给舵机并联一套平衡杆来平衡驱动载荷,传给机身的载荷仅剩5%,即剥离机身支持刚度耦合作用。用铰链轴代替大直径转轴,它只传剪,即剥离传统大直径转轴弯/扭耦合作用。只需调节平衡杆参数,即可获得颤振速度目标值,使抗颤振设计实现解耦简化。揭示了该平尾颤振速度响应规律,研制的铰链式平尾部件颤振速度提高1/3,平尾减重1/5,转轴直径减少2/3。
  王向明率领团队将上述研究内容进行了充分技术验证,成功实现了工程应用,突破了传统结构重量和寿命的极限束缚,打破了传统结构“天花板”,“新型战机新概念结构与快速试制技术”项目一举获得国家技术发明奖二等奖。
  
敢为人先,打印奇思妙想
  同传统机加减材、锻铸与钣金成形等工艺相比,增材制造(俗称3D打印)的“生长”特性为结构设计拓宽了自由空间,可作为飞机结构创新的孵化器,因此受到国内外工业界高度重视。工业发达国家均将其视为国防现代化和作战能力提升的重要支撑。
  王向明介绍说,飞机结构增材制造的应用研究迄今已开展30多年,但应用范围、数量规模仍受局限,国内外仅有几种型号飞机在少量应用,且以次承力件为主,例如波音787、空客A350等。尽管增材制造在控形、控性和工艺装备等方面已取得重大突破,但由于缺少创新设计方法引领,单纯套用锻铸件优势不大,即想用但不太会用;另一方面,缺少性能评定/验证方法支撑,寿命安全说不清,即想用但不太敢用。二者被美国联邦航空局列为增材制造应用技术的主要难点之一。
  早在2003年,王向明就与北京航空航天大学的王华明教授(2015年当选中国工程院院士)开展密切合作,共同为飞机结构件“量身定做”,即常说的设计/制造一体化。那段时间,二人几乎每周都要凑在一起研究讨论各种各样的技术问题,心无旁骛、全神贯注。甚至发生过两人中午到餐厅吃饭,由于讨论问题过于投入,直到下午两点,竟然忘记了点午餐的趣事。
  王华明教授率先在钛合金大型复杂主承力件激光熔化沉积控形、控性、装备、标准等方面取得重大突破,而王向明考虑更多的则是如何实现创新设计、确保使用安全,着重解决3D打印面临的“会用、敢用”的问题。
  王向明借助在原总装先进制造专业组担任增材制造责任专家的机遇,规划出基于增材制造的大型整体化、构型拓扑化、梯度复合化和功能结构一体化等飞机新概念结构领域,主导系统级技术开发与工程化验证,做前人不敢做的事,开始走上打印奇思妙想的逐梦之旅。
  他基于发明的增材熔合连接方法,提出多种增材主承力结构设计方法,即通过增材熔化沉积填充,一边成形、一边连接,将两个构件合并为一个整体,使构件做得更大、更复杂。其中具体包括残余应力临界值仿真预测、离散分区成形、去除残余应力、增材熔合连接,涵盖创新设计、性能评定、工程验证等。与焊接的区别是,突破厚度限制,力学性能与母材相当,近似“无痕”连接。研制出框-梁等多种整体主承力结构,拓展法向复杂承载维度。
  针对熔合连接区疲劳特性评定,王向明提出当量应力集中系数法。将熔合连接区内部细观缺陷打包,与母材宏观应力集中当量等效,利用名义应力法确定当量应力集中系数值和寿命算法,以此作为疲劳和工艺质量评价判据。针对疲劳寿命安全,王向明建立工程化验证专用模式,与传统积木式验证不同的是,力学性能考核与工艺过程循环迭代,这样可及时暴露性能缺陷,加快改进,使增材制造主承力结构件的寿命安全保障有了技术支撑,进而解决寿命安全风险控制难题。
  拓扑结构是公认的轻量化结构,减重效率可近一半,具有极大应用潜力,受到工程界的普遍关注。王向明认为,拓扑结构属静定结构范畴,任一分支失效都将导致总体破坏。寿命安全如何保障?为此,他提出按寿命设计和稳定性设计所产生的强度裕度等效面积作为裂纹扩展容限区域,分不同情况建立拓扑结构局域损伤容限设计准则。针对拓扑结构机加难点,他还提出了增材快速成坯加表面熔凝精整的低成本工艺方法,机加量减少70%,制造成本也得到降低。
  上述研究解决了增材主承力结构创新设计难题,成效显著,零件数量减少2/3、结构减重1/5、疲劳寿命增加1/3。“飞机钛合金大型复杂整体构件激光成形技术”获得了国家技术发明奖一等奖的殊荣,这一项目由沈阳飞机设计研究所负责设计验证,北京航空航天大学负责制造。
  王向明介绍,选区熔化增材制造技术可打印出内部形状复杂的轻质功能件,但常规点阵结构的节点承载能力大都不满足飞机功能结构要求。为此,王向明将点阵结构的节点半径作为设计变量,通过形状优化降低应力集中和重量,由此建立多种拉压承载型节点强拘束微桁架单胞。他提出节点剪切强度计算方法,发现敏感设计参数(微杆半径),并据此建立有效设计手段;打印出散热器、格栅等多种高效功能件,解决了增材高承载功能结构创新设计难题。功效实现质的飞越,功能效率提高一倍、减重近2/5、零件减少95%。
  另外,据王向明介绍,飞机战损/战伤比为1∶20,结构战伤占近90%,若无法及时抢修即相当于战损。对此,他提出了补强几何应力集中/填充复合应力集中最小的修理设计方法、浪涌偏差修正方法,建立“四快”修复流程与数据库——设计、评定、制造、修复。主持完成了3类材料、9类构件的地面静态、摇摆动态环境下的工程验证,为保持舰载机完好率提供技术途径。
  上述成果应用于多个型号项目,单机用量达复合材料用量的1/7,含5种工艺、9种材料。开辟了增材构件在飞机上工程化应用先河,实现了质的飞越,应用进程保持领先,使我国成为唯一实现增材制造构件在飞机上规模化应用的国家。王向明领衔的“基于增材制造的飞机结构创新设计与工程应用”项目由此获得了国防科技进步奖一等奖。
  
厚积薄发,只为一飞冲天
  航空工业集团审时度势,决策研发第四代中型战机——“鹘鹰”。总设计师孙聪(2015年当选中国工程院院士)慧眼识人、甘当伯乐,将该型号常务副总设计师的重担压在王向明肩上。任务重大、使命光荣。王向明丝毫不敢懈怠,双管齐下,一手带领团队全力以赴开展设计工作,一手研究如何“好、快、廉”把飞机造出来。他深入系统地研究了有关新机研制的特点,规划出独具特色的新机快速试制模式与技术体系,并得到总设计师和项目总指挥的鼎力支持。
  新机研制通常分为验证机与工程发展型两个阶段,其中验证机阶段需要多次迭代、快速验证、快速完善。而国内没有新机快速试制机制,主要采用串行批产模式,传统结构为主、工装模具较多,不适合快速响应和频繁设计更改,急需建立快速响应研制新模式,但对其技术和方法缺乏认知。
  王向明提出了“协同设计/制造前移”的快速试制模式,贯穿全流程。即多专业协同建模以统一数据源;集中参数优化以提高计算精度;联合产品定义以提高设计效率;制造技术前移,边设计、边制造,来缩短研制周期。
  同时,王向明基于多年预研成果积累,通过优化组合/剪裁、补充完善,建立设计/制造一体化的快速试制技术体系。包括创新结构支撑、三维/优化设计、无模/敏捷制造、通用/柔性装配、隐身表面高精度控制等技术。
  为了化解潜在风险,王向明一边积极组织进行模拟验证,另一边全力推进飞机快速试制。所采取的边设计、边制造的并行协同模式使得某时段内的工作量倍增,超负荷的工作压力几乎将王向明的身体压垮,最紧张的时候,他曾经在早八点到凌晨两点之间,先后8次往返设计所和工厂!因长时间在试制现场,王向明甚至被工艺员戏称为(快速试制中心的)“更夫”。
  这期间还有一次更加惊心动魄的险情。2012年10月3日下午,王向明从工厂返回家中后不久,感觉到腹部剧痛难忍,一下子晕倒在卫生间,失去了知觉。幸亏国庆节长假期间,妻子和女儿都在家中,发现异常急忙施救。王向明的妻子是从事药品检验工作的,有一点医护常识,及时采取了有效施救措施,不然后果难以预料。
  艰苦的付出终于获得了丰硕回报,换来“鹘鹰”成功首飞!当飞机平稳着陆的那一瞬间,王向明和他的团队成员激动相拥,眼里噙满泪水,内心深处迸发出一个声音——“义鹘冲天伴梦飞!”
  “鹘鹰”快速试制创造并保持了多项纪录:全机重量控制精度提高一个数量级;危险部位减少一半;结构件/工装减少一半,设计制造缩短1/4。航空工业集团评价:该快速试制模式取得一系列技术创新的突破。为后续型号装备立项研制夯实了基础,并凭借“新型战机新概念结构与快速试制技术”项目获得了国家技术发明奖二等奖。
  航空报国的梦想让王向明一路披荆斩棘,用技术创新推动着我国航空事业的发展,实践着科技强军的使命。王向明与团队所取得的研究成果改变了飞机结构设计与研制的传统模式,突破传统极限束缚,为我国成为世界唯一实现增材制造构件在飞机上规模化应用的国家做出了重要贡献。多年的坚持,也让他和团队赢得了众多的荣誉,先后荣获了国家技术发明奖一等奖和二等奖、国防科技进步奖一等奖、航空航天月桂奖、航空报国金奖、辽宁省先进工作者、辽宁省五一劳动奖章、辽宁省十大创新能手、沈阳市劳动模范等一系列奖励与荣誉。以他的名字命名的“王向明劳模创新工作室”先后成为辽宁省级、航空工业集团级劳模创新工作室。面对荣誉和称号的接踵而来,王向明将其视为组织上的鼓励和继续前进的动力,而在他心中排在第一位的永远是党和国家赋予他在飞行器结构技术发展路上不断突破的崇高事业。
  日复一日,年复一年。就是这种在外人看起来清苦而又艰辛的科研之路,王向明走在其间却并不觉得寂寞和辛苦。“在工作中寻求乐趣”一直是王向明奉行的工作理念。他始终将此视为国家使命,一刻不曾懈怠。“做得时间久了,生活、兴趣、专业、家庭全都注入在这里面了。对于飞行器结构设计的探索已经融入了我的一生,这辈子只想做好这一件事。如果有下辈子,我还会选择飞机结构设计!”王向明饱含深情地说。
  
专家简介
  王向明,工学博士、研究员、博士生导师。主持或参与多个型号机体结构设计。现任航空工业集团沈阳飞机设计研究所项目总设计师、“鹘鹰”飞机常务副总设计师、航空工业集团增材制造首席专家、创新结构国防原“973”技术首席、飞行器新概念结构航空科技重点实验室主任、辽宁省增材制造共性技术创新中心主任。某部先进制造技术专业组增材制造责任专家。
  王向明是飞机机体平台结构设计领军人物,长期从事结构创新设计与制造一体化研究。先后承担原总装、装发部、军科委、科技部、工信部、科工局主管的有关飞机结构设计与制造研究项目20余项,在飞机新概念结构设计、增材制造应用技术、新机快速试制等方面做出重要贡献。先后获国家技术发明奖一等奖、二等奖,国防科技进步奖一等奖2项。授权发明专利32件,发表期刊论文53篇、出版专著5本、撰写重要研究报告40余篇,大型学术会议特邀报告15次。
  

分享到:

杂志
本期封面

2024年10月

上一期 下一期